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Questions of today

1. Let  be a holomorphic function. Show that  is a polynomial of degree  if and only if
there exists a positive constant  such that  for any .

2. Let  be a connected region, show that the set of holomorphic functions on , with the usual
addition and multiplication of functions, is an integral domain.

3. Show that a continuous function  holomorphic off  is entire.
4. Strengthed version of Casorati Weierstrass Theorem: Suppose  has an essential singularity at 

. Let  and . Show that for any , there is a number  such that 
 has infinitely many solutions in .

5. Let  be holomorphic and  on . Suppose . Show that the number of zeroes

of  in  is less than or equal to 

Hints & solutions of today

1. For the "if" direction, use Cauchy's formula to find the coefficient of the power series expansion of  at
the origin.

2. The zero set of a non-zero holomorphic functions on a connected domain is discrete
3. Use Morera's theorem.
4. (In the tutorial, I mixed up  with ). 

Let me denote the punctured disc  by . We will use the usual Casorati Weierstrass theorem
together with the open mapping theorem: for any ,  is dense open in .
Let  be a sequence of positive integer less than  and such that . Using the theorem, we can
find an open disc  of radius less than  such that

Next, we can find an open disc  of radius less than  such that

. Continuing in this way, we can find a sequence of open discs  with

Radius of  is less than 

(See theorem 1.4 of chapter 1, textbook) We choose , then we see that  would form a
Cauchy sequence, and thus tends to some complex number . Now, note that  for all , and
therefore  is non-empty for each . This shows that  is an infinite set.

5. Suppose  are zeroes of  on . Then the function

is holomorphic. 
By the Maximal modulus principle,

Therefore, we have

Since, for , we have , we have

Outline

In this note, we have

1. Relations between holomorphic functions with functions from .
2. Differential one forms, line integrals and  operators.
3. Differential two froms, Stokes' theorem and Cauchy integral formula

In the tutorial, we only talk about part 2, which motivates the definition of  operators.

Complex numbers

Linear algebra over 

We can identify  with  by the map

More generally, we can identify  with  by the map

Under this identification, the multiplication by  on  is the linear transformation on  given by the
block diagonal matrix

Where

Using the defintion of linear transformations, we have

An  linear map , regarded as a map  is  linear if and only if

Return to the case of , every linear maps  is just the multiplications  by a complex
number . The matrix representation of , regarded as a map  is

.

Remarks

The determinant of the above matrix is .

Polar coordinates

Each complex number  can be represented , where . Note that  is uniquely determined,
while  is unique up to adding an integral multiple of . Using the above , we have

So  is the composite of a rotation and an enlargement. In particular,  is an orientation preserving (
) conformal (angle preserving) linear transformation.

Holmorphic functions

I copy here the definitions of holomorphicity. Let  be a region (open connected subset).

Definition (holomorphicity): A function  is holomorphic at a point  if the limit 

exists. The function  is said to be a holomorphic function if  is holomorphic at every point of .

The limit appeared in the above definition is called the derivative of  at , denoted . There are some
important facts, we listed here

1. If  is holormorphic, then so is , and in particular  is infinitely differentiable
2. Write ,  being real valued functions, then  is holomorphic if and only if f is

continuously differentiable as a map from , and satisfies the Cauchy Riemann equation.

3. If  is a unit disc centered at  and of radius , and if  is holomorphic on , then  has a
taylor series representation on the WHOLE :

where . With  and  is the circle centered at , radius 

 and oriented anti-clockwisely.

As in 2, regarding  as a map , we have

If  is holomorphic, then we have

Together with our discussion of linear algebra, we see that

 satisfies the Cauchy Riemann equations at  if and only if  is  linear.

Differential 1 forms on 

In the lecture, opperators  and  are being defined so that the Cauchy Riemann equation for  can be
written simply as . In this part, the languages of differential (one) forms will be introduced, and we will
see how the operator  and  arises naturally by a changing of coordinates. 

We first think  as , let  be a region in .

A differential one form on  is a finite sum of the form

where  are smooth functions on .

For the purpose of this note, you may think that differential forms are just symbols which have meaning only
when we integrate it. Let  be a smooth curve, we define, for the above ,

where  are smooth functions on .

This is in fact what we have learnt in Advanced Calculus course, for example

Let , and . Then

Since we only care about integrations, so we identity two differential forms if their integration over any curve
are the same.

Let  be two differential forms on , we say  if for any smooth curve , we have

Thus, for example, we have .

Theorem (Change of coordinate formula): 

For any smooth , we have .

Let .

The result follows from the multivariable chain rule:

In the above proof, there is nothing special about the cartesian coordinates. We can similar derived a formula
for the polar coordinate :

. In fact, this can be checked directly using multivariable chain rule.

We show here . In fact, we have

The complex differential operator  and  arises when we consider complex functions and complex change
of coordinate. As usual, let  and . 
By requireing

We have

Solving , we have

Such a formula can also be obtained by using the multivariable chain rule. For example, since ,
, so . Thus

(Cauchy Riemann equations) 
Define the partial differential operators

A function  satisfies the Cauchy Riemann equation if and only if

This can be checked by comparing the real and imaginary parts. Theorem 3.2 of the chapter 1 of the textbook
can be derived easily.

Theorem Let  be holomorphic on , and  be a smooth curve, then
.

Since  is holomorphic, we have , so

Differential two forms

Recall when integrating along a surface, the orientation is important, we want to formnula the integral of two
forms in a way the the orientation is important.

A differential two form on  or  is a finite combinations of terms like

where  are smooth functions.

In , we can integrate a differential two form over a parametrized surface by substituting the coordinates into
the differential forms as in the case of differential one form. Note that in this case, integrations depends on the
orientation, and when doing integrations, we must have a coordinate substitution that is compatible with the
orientation. 
In , we will declare the coordinates  to be positive.
A (local) coordinate system  of  is called orientation preserving(reversing) if

Now, let  be a domain, we define the integral of a differential two form  to be

where  is an orientation preserving coordinate substituion. 

Like surface integral in , if you reverse the orientation of a surface, the integral will get a minus sign. We
want this to be true for the integral of differential two forms over . An example of orientation preserving
coordinate subtitution is , and an orientation reversing coordinate substituion is . If
we use the first substitution to differential form

you will get

If you use the second substituion, however, you will get

Therefore, we should set . More generally, we should have the following requirement in our
definition of differential forms.

We will discuss about the Stokes' theorem in differntial form setting, so we come to the defintion of exterior
derivatives.

For example, one have .

Stokes' theorem 1 Let  be a positively oriented simply connected closed curved, and  be
the region bounded by . Then for any differential one form , we have

We will prove only two special cases, and the general case will follow from these two cases by a partition unity
argument together with a suitable choice of coordinates. See, for example Differential Forms in Algebraic
Topology by Bott and Tu. Let  

Case 1

If the square , and  in . 
In this case, the integral of one form is zero, while the integral of the two form

Case 2

Still  on , and  is the square  running
in the anti-clockwise direction. In this case, the integral of  over  is just

On the other hand, the integral of the two form is given by

Suppose  is adifferential one form on , and  be the annulus 
. We have 

. In fact, the same (and the same proof) is true

even we only assume  is a differential form (smooth) on .

Cauchy Integral formula and residue theorem

We now switch to complex coordinates.

Let  be a smooth function,  is a positively oriented simply closed
smooth curve, and  is the region bounded by . Suppose  and , then

One consequence of the theorem is that the improper double integral on the right converges.

For simplicity, we assume . Let  be a small circle centered at , and  be the region between
 and . Then we have

We then calculate .

This will tend to  as . What remains is to show that the double integral on the right
exists when . In fact, we have

and this terms obviousely tends to

when .

If  is holomorphic, then , so we have

If  with  holomorphic, then
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